5

以下のベクトル $\overrightarrow{x}$, $\overrightarrow{y}$, $\overrightarrow{z}$ と $\overrightarrow{p}$ に対し,

$\overrightarrow{p} = a\overrightarrow{x} + b\overrightarrow{y} + c\overrightarrow{z}$

と表した時の $c$ の値として正しいものを以下の選択肢から選びなさい。

$\overrightarrow{x} = (-1,-1,-2)$, $\overrightarrow{y} = (3,1,4)$, $\overrightarrow{z} = (0,-4,-3)$, $\overrightarrow{p} = (3,1,2)$

$-2$

$2$

$5$

$-5$

$a\overrightarrow{x} + b\overrightarrow{y} + c\overrightarrow{z} = (-a + 3b , -a + b - 4c , -2a + 4b - 3c )$

より

$\left\{ \begin{aligned} -a + 3b &= 3 ~~\cdots({\rm i})\\ -a + b -4c &= 1 ~~\cdots({\rm ii})\\ -2a + 4b - 3c &= 2 ~~\cdots({\rm iii})\end{aligned} \right.$

$({\rm i}) $ より

$a = 3b-3$

$({\rm ii})$ と $({\rm iii})$ に代入し整理すると

$\left\{ \begin{aligned} -2b -4c & = -2 \\ - 2b - 3c &= -4 \end{aligned} \right.$

これを解くと $b = 5$, $c = -2$ であり, $a = 3b-3 = 12$ である。