1

$A = \begin{pmatrix} 1 & -1 \\ 2 & -3 \end{pmatrix}, ~ B = \begin{pmatrix} 0 & -3 \\ 3 & -3 \end{pmatrix}$ に対し, 行列 $X$ が

$AX = B$

を満たす時 $X$ として正しいものを以下の選択肢から選びなさい。

$\begin{pmatrix} -3 & -6 \\ -3 & -3 \end{pmatrix}$

$\begin{pmatrix} -6 & 3 \\ 3 & 0 \end{pmatrix}$

$\begin{pmatrix} 6 & -3 \\ 9 & -6 \end{pmatrix}$

$\begin{pmatrix} 3 & -9 \\ 0 & -3 \end{pmatrix}$

$A = \begin{pmatrix} 1 & -1 \\ 2 & -3 \end{pmatrix}$

より

$A^{-1} = (-1) \begin{pmatrix} -3 & 1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 2 & -1 \end{pmatrix}$

である。$AX = B$ の両辺に左から $A^{-1}$ を掛ければ

$X = A^{-1}B =  \begin{pmatrix} 3 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 0 & -3 \\ 3 & -3 \end{pmatrix} = \begin{pmatrix} -3 & -6 \\ -3 & -3 \end{pmatrix}$

である。