3
$2$ つのベクトル $\overrightarrow{a}$ と $\overrightarrow{b}$ の大きさがそれぞれ $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 1$ であり, $\overrightarrow{a}$ と $\overrightarrow{b}$ のなす角が $\dfrac{\pi}{3}$ である時, $\overrightarrow{a}$ と $\overrightarrow{b}$ の内積の値を以下の選択肢から選びなさい。
$1$
$\sqrt{3}$
$\dfrac{1}{2}$
$\dfrac{\sqrt{3}}{2}$
$2$ つのベクトル $\overrightarrow{a}$ と $\overrightarrow{b}$ のなす角が $\theta$ である時, $\overrightarrow{a}$ と $\overrightarrow{b}$ の内積 $\overrightarrow{a} \cdot \overrightarrow{b}$ は
$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}||\overrightarrow{b}|\cos \theta$
である。よって
$\overrightarrow{a} \cdot \overrightarrow{b} = 2\cdot 1\cdot \cos \dfrac{\pi}{3} = 1$