1

$2$ つのベクトル $\overrightarrow{a}$ と $\overrightarrow{b}$ の大きさがそれぞれ $|\overrightarrow{a}| = 9$, $|\overrightarrow{b}| = 8$ であり, $\overrightarrow{a}$ と $\overrightarrow{b}$ のなす角が $\pi$ である時, $\overrightarrow{a}$ と $\overrightarrow{b}$ の内積の値を以下の選択肢から選びなさい。

$-72$

$-36$

$72$

$36$

$2$ つのベクトル $\overrightarrow{a}$ と $\overrightarrow{b}$ のなす角が $\theta$ である時, $\overrightarrow{a}$ と $\overrightarrow{b}$ の内積 $\overrightarrow{a} \cdot \overrightarrow{b}$ は

$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}||\overrightarrow{b}|\cos \theta$

である。よって

$\overrightarrow{a} \cdot \overrightarrow{b} = 9\cdot 8\cdot \cos \pi = -72$